How Does an Answer Set Solver Work?

Notes

e Assume that P is a ground and normal
program.

 Answer sets of disjunctive programs are
computed in a similar way.

 The algorithm presented in these slides is
similar to the algorithm implemented by the
first answer set solver (smodels)

Useful Observations about Answer Sets

 For aprogram P and an answer set S

— if an atom a does not appear in the head of any
rulein Pthena ¢ S.

— if an atom a € S then there exists a rule rin P such
that a = head(r), pos(r) = S, and neg(r) NS = .
* An answer set S can be viewed as a pair <S,N>
where N =B, \ S (B, is the Herbrand base of P;
S contains the true atoms and N contains the
false atoms)

Useful Observations about Answer Sets

e |f we know that some atom, say a, must be in an
answer set then we could eliminate all the rules, whose
negative part contains a, from consideration

e |f we know that some atom, say a, cannot be true in an
answer set then we could eliminate all the rules, whose
positive part contains a, from further consideration

— a must be in every answer set (1

P _ b« nota < |invirtue of (1) this rule should never be considered
! or b should be false (2)
c<b

- \ in virtue of (2) this rule can never be applied and

hence c cannot be true (3)

(1), (2), (3) imply that the answer set is {a}

Useful Observations about Answer Sets

e A partial answer set is a pair <CS, CN> where CS
and CN are two disjoint sets of atoms in B, which
contain atoms that must be true or false,
respectively, with respect to an answer set

e Given P and a partial answer set <CS, CN> the
aforementioned observations can be used to
determine a partial answer set <CS’, CN’> such
that CS —CS’ and CN cCN’ if CS is a subset of an
answer set

— E.g.: for P, and <, J> leads to <{a},{b}>

Useful Observations about Answer Sets

 Given P and a partial answer set <CS, CN>, there
are situations where no atom must be true or
false. In this case, the value of an atom must be
guessed and depending on the guessed value, the
partial answer set can become different. E.g.,

P,={a < notb, b < nota}and <, 0>
a could be true or false and b could be true or false.

Guessing a true leads to <{a}, &> which ultimately leads
to <{a}, {b}>

Guessing a false leads to <7, {a}> which ultimately leads
to <{b}, {a}>

Detailed Algorithm: Expand(P, CS, CN)

e |nput: a program P and a partial answer set <CS,CN>

e Qutput: a partial answer set <CS’, CN’> such that CS
—CS’ and CN cCN’ or false if CS cannot be extended to
an answer set

repeat

— set change to false

— find all rule r such that pos(r)cCS and neg(r)cCN, add
head(r) to CS, and set change to true

— find all rule r such that pos(r)"CN=Z or neg(r)N\CS=J,
add head(r) to CN, and set change to true

until there is no change in <CS,CN> (change is false)
return <CS,CN> if CS N"CN=O or false otherwise

Detailed Algorithm: Solves(P, CS, CN)

e |nput: a program P, a partial answer set <CS, CN>

e Qutput: answer sets of P which are superset of CS
or false otherwise

if Expand(P, CS, CN) = false then return false
<CS,CN> = Expand(P, CS, CN)

select an atom a that does not belong to CSUCN
return Solves(P,CS\{a},CN)uUSolves(P,CS,CN{a})

Solver Algorithm

* |nput: a program P

e Qutput: answer sets of P or false if no answer
set exists

if Expand(P, @ , &) = false then return false
set <CS,CN> = Expand(P, &, &)
return Solves(P, CS, CN)

Example

[a <« Which atom to guess
is the key to solver’s
b <—not a performance
P=! c«ad
e <« notd
d < note

Expand(P, & , @) returns <{a}, {b}>
Solves(P, {a}, {b}) calls Solves(P, {a,d}, {b})

and Solves(P, {a}, {b,d}) [Guessing d]
Solves(P, {a,d}, {b}) returns {a,d,c} as an answer set
Solves(P, {a}, {b,d}) returns {a,e} as an answer set

Example

- d < I a=true _ --3> | Expand(P, G, J)=<{a},{b}>

a = true and1o other

b < not a __-rule'with head = b

implies b = false

C < a, d\ a=true and d=true

\\sg c=true

Solves(P, {a}, {b})

guess d

e < not d\}};false and no —

head=e_'~._

i d <« note ‘Dther rule with Solves(P, {a,d}, {b}) Solves(P, {a}, {b,d})

so c=false "~-3-
\'\\A

.

Expand(P, {a,d} ,{b})=<{a,d,c},{b,e}>

Expand(P, {a},{b,d})=<{a,e},{b,d,c}>

\@,d,c,b,e} =B,

{a,d,c}

J

{a,e}

