Knowledge Representation and Reasoning

> CS227 Spring 2011

- Lecturer: Vinay K. Chaudhri (<u>Vinay.Chaudhri@SRI.COM</u>)
 - Office Hours: After class and by appointment, Gates 195
- TA: Zahra Mohammadi Zadeh (zahram@stanford.edu)
 - Office Hours: TBA

Outline

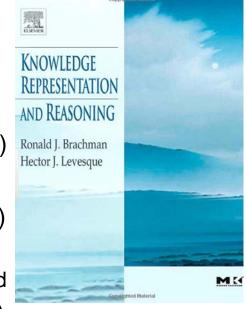
- Three Example Systems
- Goals / Design of the course
- Some Basic Definitions

Example Systems

- We will take a look at three implemented systems
 - Cognitive Assistant (SIRI)
 - Smart Textbook (Inquire)
 - Computational Knowledge Engine (Wolfram Alpha)
- For each system, we will look at
 - What knowledge must it represent?
 - What reasoning must it do?
 - What would it take to extend it?
 - Where does it fail?
 - How is it different from (current) Google?

- See Demo at: <u>http://www.youtube.com/watch?v=MpjpVAB06O4&feature=player_embedded</u>
- What knowledge must it represent?
 - Restaurants, movies, events, reviews, ...
 - Location, tasks, web sources, ...
- What reasoning must it do?
 - Nearest location, date for tomorrow, AM vs PM, etc
- What would it take to extend it?
 - More sources, different sources,
- Where does it fail?
 - Completely different environment, completely different task
- Differences from Google
 - Dialog driven, task-oriented, location aware, ...

- What knowledge must it represent? (Demo in the class)
 - Concepts, definitions, relationships, descriptions
- What reasoning must it do?
 - Follow relationships, answer questions
- What would it take to extend it?
 - Must be customized to a new domain, must have methods for handling each kind of question
- Where does it fail?
 - Does not capture all the content in the book, limited forms of reasoning
- How is it different from Google?
 - Very specific domain targeted at a specific class of user situated in an educational context


Wolfram Alpha

- Try out examples at: <u>http://www.wolframalpha.com/examples/</u>
 - We will focus on the nutrition example
- What knowledge must it represent?
 - Different kinds of foods, their nutrition composition, caloric values
- What reasoning must it do?
 - Mathematical computations based on portions
- What would it take to extend it?
 - Add more data on foods and nutrition composition
- Where does it fail?
 - Does not know about recipes, how to combine foods, ...
- How is it different from Google?
 - Data driven as opposed to document driven, mathematical reasoning

- Introduction to techniques used to represent symbolic knowledge
- Associated methods of automated reasoning
- The three systems that we saw
 - use symbolic knowledge representation and reasoning
 - But, they also use non-symbolic methods
 - Non-symbolic methods are covered in other courses (CS228, CS229, ...)
- This course would be better labeled as a course on Symbolic Representation and Reasoning
 - The non-symbolic representations are also knowledge representations but are not covered in this course

- Textbook:
 - Knowledge Representation & Reasoning by Brachman & Levesque (available online)
- Lectures
 - Tuesday and Thursday, 12:50-2:05, 300-300
- Grades
 - Four Assignments (40%), Mid-term (25%), Final (35%)
- Prerequisites
 - First order logic and Resolution (at the level of CS157)
 - There will be two tutorial sections to cover this material
 - The textbook chapters 2-4 provide adequate background
 - Discrete mathematics (data structures and algorithms)
 - A course in AI (knowledge of Lisp or Prolog)

- Course website
 - http://cs227.stanford.edu
- Topics:
 - Object-oriented representation, description logics, ontologies, logic programming, constraint programming, action representation and reasoning, abstraction/reformulation/approximation
- Tests
 - Mid-term, Date: TBA
 - Will be held in the evening
 - Please let us know about any conflicts ASAP
 - Final, Date: TBA
- Staff mailing list
 - cs227-spr1011-staff@lists.stanford.edu
- Projects
 - Only with the approval of the instructor

- Will this course require programming?
 - We will work with several off-the-shelf representation and reasoning tools
 - We will not be writing any new tools from scratch
 - The focus will be on applying representation techniques to real world knowledge and using existing tools to reason with that knowledge
 - Minor programming may be needed for some assignments

- This course is a good follow up to
 - CS157: Computational Logic
 - CS221: Introduction to Artificial Intelligence
 - CS270: Modeling Bio-Medical Systems
- This course is complementary to:
 - CS228: Probabilistic Graphical Models
- This course can be followed by:
 - CS223: Rational Agency and Intelligent Interaction
 - CS224: Multi-agent systems
 - CS227B: General Game Playing
 - Application of techniques in your respective projects
 - Research opportunities in symbolic representation and reasoning

Mini Project

- Represent a chapter from a Biology textbook and answer the questions at the back of the book
 - It is high school level knowledge and each of us should know it
 - Develop confidence in approaching any domain with the formal tools you will learn in this course
 - Primary focus on representation and reasoning
 - Provides natural progression:
 - one question, multiple questions, novel questions
 - Structured representations, inference rules, special purpose reasoners

Outline

- ✓ Three Example Systems
- ✓ Goals / Design of the course
- Some Basic Definitions

What is knowledge?

Easier question: how do we talk about it?

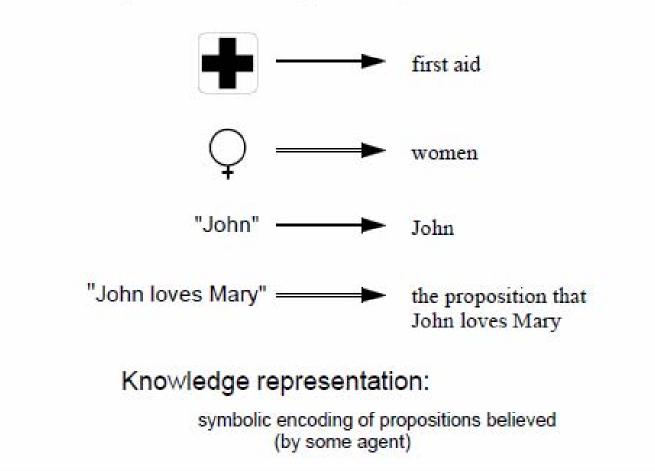
We say "John knows that ..." and fill the blank with a proposition

- can be true / false, right / wrong

Contrast: "John fears that ..."

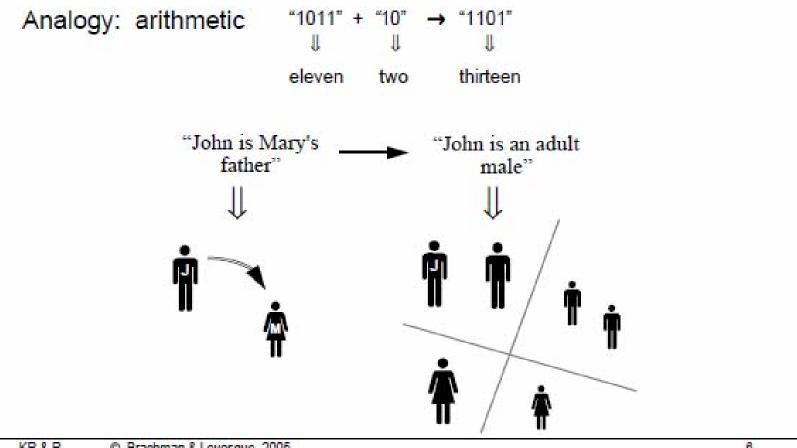
- same content, different attitude
- Other forms of knowledge:
 - know how, who, what, when, ...
 - sensorimotor: typing, riding a bicycle
 - affective: deep understanding

Belief: not necessarily true and/or held for appropriate reasons and weaker yet: "John suspects that ..."


Here: no distinction

the main idea

taking the world to be one way and not another


What is representation?

Symbols standing for things in the world

What is reasoning?

Manipulation of symbols encoding propositions to produce representations of new propositions

Why KR&R?

- KR Hypothesis (Brian Smith)
 - Any mechanically embodied intelligent process will be comprised of structural ingredients that
 - We as external observers naturally take to represent a propositional account of the knowledge that the overall process exhibits
 - Independent of such external semantic attribution, play a formal but causal and essential role in engendering the behavior that manifests that knowledge
- Two issues: existence of structures that
 - We can interpret
 - Determine how the system behaves

Two examples

Example 1	<pre>printColour(snow) :- !, write("It's white."). printColour(grass) :- !, write("It's green.") printColour(sky) :- !, write("It's yellow."). printColour(X) :- write("Beats me.").</pre>
	<pre>printColour(X) :- colour(X,Y), !, write("It's "), write(Y), write("."). printColour(X) :- write("Beats me.").</pre>
Example 2	<pre>colour(snow,white). colour(sky,yellow). colour(X,Y) :- madeof(X,Z), colour(Z,Y). madeof(grass,vegetation). colour(vegetation,green).</pre>
Only	the 2nd has a separate collection of symbolic
	tures à la KR Hypothesis
	its knowledge base (or KB)

.: a small knowledge-based system

- We can add new tasks and easily make them depend on previous knowledge
 - Enumerating objects vs painting objects
- Extend the existing behavior by adding new beliefs
 - Assert that canaries are yellow
- Debug faulty behavior by locating the erroneous beliefs
 - By changing the color of sky we change any routine that uses that information
- Explain and Justify the behavior of the system
 - The program did X because Y

- Given
 - Patient X allergic to medication M
 - Anyone allergic to medication M is also allergic to medication M'
- Reasoning helps us derive
 - Patient X is allergic to medication M'

Entailment

Sentences $P_1, P_2, ..., P_n$ <u>entail</u> sentence *P* iff the truth of *P* is implicit in the truth of $P_1, P_2, ..., P_n$.

If the world is such that it satisfies the P_i then it must also satisfy P. Applies to a variety of languages (languages with truth theories)

Inference: the process of calculating entailments

- sound: get only entailments
- complete: get all entailments

Sometimes want unsound / incomplete reasoning

for reasons to be discussed later

Logic: study of entailment relations

- languages
- truth conditions
- rules of inference

Using logic

No universal language / semantics

- Why not English?
- Different tasks / worlds
- Different ways to carve up the world

No universal reasoning scheme

- Geared to language
- Sometimes want "extralogical" reasoning

Start with first-order predicate calculus (FOL)

- invented by philosopher Frege for the formalization of mathematics
- but will consider subsets / supersets and very different looking representation languages

KR&R and AI

- KR&R started as a field in the context of AI research
 - Need explicitly represented knowledge to achieve intelligent behavior
 - Expert systems, language understanding, ...
- Many of the AI problems today heavily rely on statistical representation and reasoning
 - Speech understanding, vision, machine learning, natural language processing
 - For example, the recent Watson system relies on statistical methods but also uses some symbolic representation and reasoning
- Some AI problems require symbolic representation and reasoning
 - Explanation, story generation
 - Planning, diagnosis
 - Abstraction, reformulation, approximation
 - Analogical reasoning
- KR&R today has many applications outside AI
 - Bio-medicine, Engineering, Business and commerce, Databases, Software engineering, Education

Some Long-Term Problems that need Knowledge Representation

- Read a chapter in a textbook and answer questions at the end of the chapter
- Einstein in a box: The quality of reasoning that distinguishes an ordinary human from a top scientist
 - Answer the same questions as a national academy of science member
- Learn how to repair a mobile robot and successfully demonstrate the capability by repairing one on Mars
- Encyclopedia on Demand
 - Produce a 5000 word or less encyclopedia style article on a given subject by summarizing from the relevant information available on the web in less than 24 hours

- Required Reading
 - Chapter 1 of Brachman & Levesque textbook
 - Chapters 2-4 if you do not have prior background in FOL
- Optional Readings
 - Three Open Problems in AI. Raj Reddy. In the Journal of ACM, Vol 50, No. 1, 2003.
 - Some Challenges and Grand Challenges for Computational Intelligence. Edward A. Feigenbaum. In the Journal of ACM, Vol 50, No. 1, 2003.
 - Systems that Know What they're Doing. Ron Brachman. Intelligent Systems, Vol 17, no. 6, pp 67-71.