Structured Descriptions &

Tradeoff Between Expressiveness and
Tractability

Outline

 Review
» EXxpressiveness & Tractability Tradeoff
 Modern Description Logics

Object Oriented Representations

« Key Representation Constructs

— class, individual, slot and facet

— subclass-of, instance-of

— domain, range, cardinality, numeric-minimum, etc
 Key Reasoning Operations

— Inheritance

— Default values

Structured Descriptions

» Key Representation Constructs
— Class, individual, role
— Concept forming constructors (AND, ALL, EXISTS, FILLS...)
— Role forming constructors (RESTR, ...)
 Key Reasoning Operations
— Subsumption
— Classification

Outline

e Review

» EXxpressiveness & Tractability Tradeoff
— Properties of reasoning procedures
— An example description language
— What makes reasoning hard?
— Working around reasoning difficulties

 Modern Description Logics

Key Questions in KR&R

Why restrict the representation language?

Why not represent anything that needs to be

represented using whatever representation language is
needed?

Why not use English as a representation language?

Properties of Reasoning Procedures

* Areasoning procedure is sound if and only if any
sentence that can be derived from a KB using that
procedure is logically implied by that procedure

e A reasoning procedure is complete if and only if any
sentence logically implied by a KB can be derived using
that procedure

e A reasoning procedure is intractable if its execution time
scales exponentially with the size of the KB

Simple description logic

Consider the language FL defined by:

<concept> ;= atom <role> ;= atom
| [AND <concept> ... <concept>] | [RESTR <role> <concept>]
| [ALL <role> <concept>]
| [SOME <role>] (= [EXISTS 1 <role>])

Example: [ALL :Child [AND Female Student]]

an individual whose children are female students

[ALL [RESTR :Child Female] Student]

an individual whose female children are students

there may or may not be male children and they may or may not be students

Interpretation § =(D, I) as before, but with
[[[RESTRrc]l= {xy) | (xy) e llr] and ye I[c] }

SO [RESTR :Child Female] is the :Child relation restricted to females = :Daughter

Subsumption defined as usual

KR &R © Brachman & Levesque 2005 271

Computing subsumption

First for FL = FL without the RESTR operator

« put the concepts into normalized form [AND p, ... p,
[SOME r/] ... [SOME r,]
[ALL s, ¢q] ... [ALL s, ¢,]]

n " Rn

» to see if C subsumes D make sure that
1.foreverype C, pe D
2.for every [SOME 7] € C, [SOME 7] € D
3.for every [ALL s ¢] € C, find an [ALL s d] € D such that ¢ subsumes d.

Can prove that this method is sound and complete relative to
definition based on interpretations

Running time:
« normalization is O(n?)

« structural matching: for each part of C, find a part of D. Again O(?)

What about all of FL, including RESTR?

KR&R © Brachman & Levesque 2005 272

Subsumption in FL

« cannot settle for part-by-part matching

[ALL [RESTR :Friend [AND Male Doctor]] [AND Tall Rich]]

subsumes

[AND [ALL [RESTR :Friend Male] [AND Tall Bachelor]]
[ALL [RESTR :Friend Doctor] [AND Rich Surgeon]]]

« complex interactions

[SOME [RESTR 7 [AND a b]]]
subsumes

[AND [SOME [RESTR r [AND ¢ d]]] [ALL [RESTR r ¢] [AND a €]
[ALL [RESTR 7 [AND d ¢]] 5]]

In general. FL is powerful enough to encode all of propositional logic.

There is a mapping Q from CNF wffs to FL where
|= (> B) iff Qo) is subsumed by Q(B)

But |= (0.2 (pa—p)) iff o is unsatisfiable

Conclusion: there is no good algorithm for FL unless P=NP

KR&R © Brachman & Levesque 2005 273

Moral

Even small doses of expressive power can come at a significant
computational price

Questions:
« what properties of a representation language control its difficulty?
» how far can expressiveness be pushed without losing good algorithms

* when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:
« need for case analyses is a major factor
 tradeoff for DL languages is reasonably well understood

» best addressed (perhaps) by looking at working systems

Useful approach:
« find reasoning tasks that are tractable

« analyze difficulty in extending them

KR&R © Brachman & Levesque 2005 274

Limited languages

Many reasoning problems that can be formulated in terms of FOL
entailment (KB |= o)) admit very specialized methods because of
the restricted form of either KB or o

although problem could be solved using full resolution, there is no need

Example 1: Horn clauses
« SLD resolution provides more focussed search

* in propositional case, a linear procedure is available

Example 2: Description logics
Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and “meaning postulates” like

Vx[P(x) = Vy(Friend(x,y) D Rich(y)) [AND [ALL :Friend Rich]
A Vy(Child(x,y) D [ALL :Child
Vz(Friend(y,z) © Happy(2)))] [ALL :Friend Happyl]]]

Then ask if MP |= Vx[P(x) D O@)]

KR&R © Brachman & Levesque 2005 275

Equations

Example linear equations

Let £ be the usual axioms for arithmetic:

Peano
Ya -ty = pix), Vart0=%) o axioms

Then we get the following:
E |5 (x+2y=4 A x»=1) D (x=2 Ay=1)
Can “solve” linear equations using Resolution!

But there is a much better way: — subtract (2) from (1): 3y =3

Gauss-Jordan method with back substitution | — divide by 3: y =1
— substitute in (1): x=2

In general, a set of linear equations can be solved in O(»*) operations

This idea obviously generalizes!

always advantageous to use a specialized procedure when it is available,
rather than a general method like Resolution

KR &R © Brachman & Levesque 2005 276

Approach to KR&R System Development

« Given a problem identify a combination of representation
and reasoning methods that can solve the problem

« Design a way of combining them into one mechanism

Hybrid reasoning

Want to be able to incorporate a number of special-purpose
efficient reasoners into a single scheme such as Resolution
Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment

« attach procedures to functions and predicates

e.g. numbers: procedures on plus, LessThan, ...
» ground terms and atomic sentences can be evaluated prior to Resolution
— P(factorial(4), times¢2,3)) ™ P(24, 6)
— LessThan(quotient(36,6), 5) v o = «

« much better than reasoning directly with axioms

More complex form: theory resolution

» build theory into unification process (the way paramodulation builds in =)

« extended notion of complimentary literals
{o, LessThan(2,x)} and {LessThanx,/), B} resolveto {o.p}

KR&R © Brachman & Levesque 2005 286

Outline

v Review
v Expressiveness & Tractability Tradeoff

 Modern Description Logics
— New notation and naming schemes
— Thorough complexity analysis
— Tableau reasoners
— Research on description graphs

Phases of Description Logic Research

Phase 0 (1965-1980): Pre-DL phase
— Semantic networks, frames, structured inheritance networks

Phase 1 (1980-1990): Structural subsumption algorithms
— Implementation of systems
 KL-ONE, K-Rep, Krypton, Back, LOOM
Phase 2 (1990-1995) Tableau based algorithms
— Focus on propositionally closed DLs
— Thorough analysis of complexity of reasoning

Phase 3 (1995-2000) Very expressive DLs
— Improving Tableau-based methods or conversion to modal logic

Phase 4 (2000-onwards)

— Industrial strength system for very expressive DLs with applications to
semantic web, bio-medical informatics

From Description Logics by Baader, Horrocks and Sattler, in KR&R Handbook

Modern Description Logics

* Well-specified formal semantics
— Fragments of First Order Logic (often contained in C2)
— Closely related to propositional modal logic

« Computational properties are well understood

 Reasoning services

— Practical decision procedures for key problems: satisfiability,
subsumption, query answering

— Several implemented reasoning systems are available

Adapted from lan Horrocks

Modern Notation

A man that is married to a doctor, and all of whose
children are either doctors or professors.
— B&L notation
[AND Man
[EXISTS :married Doctor]
[ALL :hasChild [OR Doctor Professor]]

- Current Notation
Human rn — Female M (Imarried.Doctor) r (VhasChild.(Doctor LI Professor))).

The Description Logic ALC

Attributive Concept Language with Complements
N. — set of concept names
N, — set of role names
N, — set of individual objects

The set of ALC concepts is the smallest set such that:

— The following are concepts:
T (top is a concept)
| (bottom is a concept)
 Every A € N. (all atomic concepts are concepts)
— If C and D are concepts and R € N, then the following are concepts

C 1 D (the intersection of two concepts is a concept)
C u D (the union of two concepts is a concept)

—C (the complement of a concept is a concept)
VR.C (the universal restriction of a concept by a role is a concept)

JR.C (the existential restriction of a concept by a role is a concept)

The Description Logic ALC

e Terminological Axioms (TBox)

— A general concept inclusion axiom has the form ¢ C D where C
and D are concepts

— WriteC=D iff bothCC Dand DC C
— A TBox is a finite set of GCIs

« Assertional Axioms (ABoX)

— A concept assertion is a statement of the form a:C where a € N,
C is a concept

— A role assertion is a statement of the form (a,b):R where a, b €
N,and R is arole

— An ABox is a finite set of assertional axioms

 Knowledge Base
— A KB is an ordered pair (7, \A) for a TBox 7Tand ABox A

Naming Conventions

. basic DL (ALC) plus transitive roles (e.g., ancestor € R,)

. number restrictions (e.g., >2hasChild, <3hasChild)

. Qualified number restrictions (e.g., >2hasChild.Doctor)

. concrete domains (e.g., real, integer, string)

. Nominals, ie, indvidual names (e.g.,Scientists M (3hasMet.{Turing})
. inverse roles (e.g., isChildOf = hasChild™)

. role hierarchy (e.g., hasDaughter C hasChild)

ENAOQY L =ZzO®

SHOIN(D) : A ALC description logic with role hierarchies,
nominals, inverse roles, and number restrictions

Also the logic of the language OWL-DL

Extensive Work on Computational Complexity

http://dl.kr.org

Complexity of reasoning in Description Logics
MNote: the information here is (always) incomplete and updated often

Base description logic: Attributive £anguage with Complements
ALC:= L | A | =0 | CAD | CvED | 3RC | WR.C

Concept constructors:

F - functionality®; (<1 R)

O A= (ungualified) number restrictions: (zn R), (2n R)
O Q - gualified number restrictions: (zn R.C), (£n R.C)

O O - nominals: {a} or {a;, ..., 8} ("one-of)

O p - least fixpoint operator: pux. C

[Farbid | complex roles2 in number restrictionsg

Role constructors:

O 171 -roleinverse: R™

- role intersection?: RNS

- rale complement: =R [|

- role chain (composition): RoS

- reflexive-transitive closure®; R*
id — concept identity: id(C)

P
U - role union: RuS
-
o
*

TBox (concept axioms):

O empty TBox

O acyclic TBox (A = C, A is a concept name; no cycles)
® general TBox (C < O, for arbitrary concepts C and)

RBox (role axioms):
[0 § - role transitivity: Tr(R)
O H - role hierarchy: R = 5

[® - complex role inclusions: RoS € R, RoS c &

s — some additional features (check it to see)

‘fou have selected a Description Logic: 4r0F ()
Complex roles in number restrictions are: forbidden

Complexity of reasoning problems?

consistency ExpTime-complete

Reasoning problem Complexity® Comments and references
Concept F—
satisfizbility ExpTime-complete See [77, Theorem 4.38].
ABox

See [77, Theorem 4.42].

Important properties of the description logic

Finite model

property Yes For the logic ALCAMMY with any TBoxes. Follows from Theorem 3.9 in [14].
Tree model o
property -

Maintained by, Evgeny Zolin
Please see the list of updates

Notes:

5 LSS

Any comments are welcome:
EZolin@cs.man.ac.uk

The letters O, I, and (Q are customary written in various orders, e.g., ALCQI0, but .S"H‘OIQ_‘ Here we do not reflect this tradition, but rather use a uniform naming scheme.
In literature, the letter F sometimes stands for feature (dis)agreement constructor (see [1, pp.882,488], [52]1), rather than functionality (see [7, 54, 40, 46]).

The presence of role intersection operatar is sometimes indicated by the letter ®, in literature, e.g. ALCAR := ALCA(N).
Transitive closure is usually denoted as 8%, The operators * and ™ are expressible in terms of each other via equalities: 8% = 2 0 8* and 8% = i@(T) U &, Note howewer that the former definition is not linearly bounded. Therefore, any complexity result for a logic with +

immediately implies the same result for a logic with (*,0), but not vice versa.

5. In the selector "allow/disallow complex roles in number restriction”, a role (expression) is called compfex if it contains any role operations other than inversion (i.e. inversion is harmless (with some rare exceptions, which are pointed out in the comments to those cases)).
However, in literature it is usually hard or even impossible to determine whether this assumption holds by looking at the nsme of a logic. For instance, A6(Qeg usually abbreviates a logic where only role names and their inverses are allowed in number restrictions;

whereas in the logic 4L\ {0), role compaosition is allowed in number restrictions. To avoid this ambiguity, the selector was introduced here explicitly.

Reasoning Tasks

|s an axiom/fact entailed by KB

— KB contains obvious errors

K EC=_1 for some concept name C ?

— KB IS consistent with intuitions

IKCE CC D s.t. expert believes C ZD ?
KECYDorKECCDs.t expert believesCC D ?

— KB entails unexpected equivalences

ICEC=D for conceptnamesCandD ?

— KB entails query answers

IC E (Parent M JhasChild.Doctor) C HappyParent ?
IC F John:HappyParent ?
Retrieve all individuals a s.t. K F a:(Wizard M 3 hasPet.Owl)

Slide adapted from lan Horrocks

Reasoning Techniques

e Direct
— Specially designed reasoning algorithms
— Operate on the DL (more or less) directly
e Indirect
— Translate into some equivalent problem in another formalism
— Solve resulting problem using appropriate technology

Slide adapted from lan Horrocks

Direct Reasoning Techniques

 Two basic classes of algorithm

— Model construction

* Prove entailment does not hold by constructing model of KB in
which axiom/fact is false
— tableau algorithms
» tableau expansion rules used to derive new ABox facts
— Proof derivation

* Prove entailment holds by deriving axiom/fact from KB

— structural, completion, rule-based algorithms
» deduction rules used to derive new TBox axioms

Slide adapted from lan Horrocks

Tableau Algorithms

o Currently the most widely used technique
— Basis for reasoners such as FaCT++, HermiT, Pellet, Racer, ...
— Standard technique is to negate premise axiom/fact

* Most effective for schema reasoning
— Large datasets may necessitate construction of large models

— Query answering may require each possible answer to behecked
— Optimizations can limit but not eliminate these problems

Slide adapted from lan Horrocks

Tableau Algorithms

Transform entailment to KB (un)satisfiability

- KEa:C iff XU{a:(=C)}is not satisfiable
- KECCD iff XU {a:(Cn=D)}is not satisfiable (for new a)

Start with facts explicitly asserted in ABox
e.g., John:HappyParent, John hasChild Mary

Use expansion rules to derive new ABox facts
e.g., John:Parent, John:VhasChild.(Doctor LI FhasChild.Doctor)

Construction fails if obvious contradiction (clash)
e.g., Mary:Doctor, Mary:—=Doctor

Slide adapted from lan Horrocks

Expansion Rules for ALC

M-rule: if 1. a: (Ci1 M Cs) € A, and
2. {a:Cr,a:C2} € A
then set A1 = AU{a: Ci,a: C2}
L-rule: if 1. a: (C1 L C2) € A, and
2. {a . Cl,a:CQ}r"‘lAzﬂ
then set 41 = AU{a:Ci} and A2 = AU {a: Cq}
J-rule: if 1. a:(35.C') € A, and
2. there is no b such that {(a,b) : S,b: C} C A,
then set Ay = AU {(a,d) : S,d: C}, where d is new in A
V-rule: if 1. {a: (VS.C), (a,b) : S} C A, and
2.b:C¢ A
then set Ay = AU{b:C}

— some rules are nondeterministic, e.g., U, <

— Implementations use backtracking search

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary
Mary:—Doctor

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary
Mary:—Doctor
John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:3hasChild.Person

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:3hasChild.Person

Mary:(Doctor LI JdhasChild.Doctor)

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:3hasChild.Person

Mary:(Doctor LI JdhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI dhasChild.Doctor)

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary
X Mary:—=Doctor
John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:3hasChild.Person
Mary:(Doctor LI JdhasChild.Doctor)
John hasChild a, a:Person, a:(Doctor LI dhasChild.Doctor)
X Mary:Doctor

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:JhasChild.Person

Mary:(Doctor LI JhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI JhasChild.Doctor)

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:3hasChild.Person

Mary:(Doctor LI JdhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI dhasChild.Doctor)
Mary:JhasChild.Doctor

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor

?

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:JhasChild.Person

Mary:(Doctor LI JhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI JhasChild.Doctor)
Mary:JhasChild.Doctor

Mary hasChild b, b:Doctor, b:Person

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary

F Mary:Doctor ? x

John:HappyParent, John hasChild Mary

Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:JhasChild.Person

Mary:(Doctor LI JhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI JhasChild.Doctor)
Mary:JhasChild.Doctor

Mary hasChild b, b:Doctor, b:Person

a:Doctor

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent 1 YhasChild.(Doctor LI JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, Mary:VhasChild._L

F Mary:Doctor ?

Slide adapted from lan Horrocks

Expansion Example

T= {Doctor C Person, Parent = Person 'l JhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, Mary:VhasChild._L

F Mary:Doctor ?

John:HappyParent, John hasChild Mary, Mary:VhasChild. |

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, Mary:VhasChild._L

F Mary:Doctor

?

John:HappyParent, John hasChild Mary, Mary:VhasChild. 1
Mary:—Doctor

John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:JhasChild.Person

Mary:(Doctor LI JhasChild.Doctor)

John hasChild a, a:Person, a:(Doctor LI JhasChild.Doctor)
Mary:JhasChild.Doctor

Mary hasChild b, b:Doctor, b:Person

Slide adapted from lan Horrocks

Expansion Example

7= {Doctor C Person, Parent = Person 'l FhasChild.Person,
HappyParent = Parent I VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, Mary:VhasChild._L

F Mary:Doctor ? /

John:HappyParent, John hasChild Mary, Mary:VhasChild. |
Mary:—Doctor
John:Parent, John:VhasChild.(Doctor LI dhasChild.Doctor)
John:Person, John:JhasChild.Person
Mary:(Doctor LI JhasChild.Doctor)
John hasChild a, a:Person, a:(Doctor LI JhasChild.Doctor)
Mary:JhasChild.Doctor
Mary hasChild b, b:Doctor, b:Person

X bl

Slide adapted from lan Horrocks

Highly Optimized Implementations

Blocking (to avoid infinite loops)
Lazy unfolding

Simplification and rewriting
Search optimization

Caching

Detecting tractable fragments
Heuristics

etc

Slide adapted from lan Horrocks

Current Research
Representing Physical Structures

Aortic
I" valve

Right

ventricle

Slide adapted from lan Horrocks

Current Research

« DLs poor at representing non-tree structures

LeftSide _ RightSide

W N, ra . L)
AorticValve | MitralValve | | PulmonicValve | TricuspidValve
T i . LY

AN

7
™. hasConnecton .~ ™
N s

/ AN 4

", v
N | Y

. h SL ~
LeftVentricle =, Septum |« RightVentricle

Slide adapted from lan Horrocks

Related Conferences

DL 2011 : 24th International Workshop on Description Logics

£ SHARE =
Link: http://dlkr.org/di2011

When Jul 13, 2011 - Jul 16, 2011 E
Where Barcelona, Spain

Submission Deadline May 1, 2011

Notification Due Jun s, 2011

Final Version Due Jun 19, 2011

Categories |ogic

OWLED 2011

OWL: Experiences and Directions -
Eigth International Workshop

San Francisco, California, USA

June 5-6 2011

Co-located with SemTech 2011

Summary

e Review

» EXxpressiveness & Tractability Tradeoff
— Properties of reasoning procedures
— An example description language
— What makes reasoning hard?
— Working around reasoning difficulties

 Modern Description Logics
— New notation and naming schemes
— Thorough complexity analysis
— Tableau reasoners
— Research on description graphs

Reading

* Required
— Chapter 16 of the B&L Textbook
— Wikipedia page on Description Logics
o http://en.wikipedia.org/wiki/Description_loqgic

